
CONTINUOUS REFACTORING
prophylaxis, surgery and spring-cleaning for source code

photo by Crispin Semmens [CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons

Urs Enzler

bbv Software Services AG

once upon a time…

quick poll

Code refactoring is the process of

restructuring existing computer code—

changing the factoring—without changing

its external behavior.

Refactoring improves nonfunctional

attributes of the software.Wikipedia

no behaviour change
tests

pair programmingreviews

what is the boundary where no behaviour change occurs?

method

class

component

feature

system

facts (TDD / unit tests)

specifications (ATDD / BDD)

system & constraint tests

tool

manual

times to refactor

Test Driven Development

add test

add functionalityrefactor

peer reviews
before pushing

after finishing a user story

Litter pick-up
1. stash your changes
2. refactor
3. commit
4. un-stash
or
1. write a task

Comprehension
code reflects your understanding

Preparatory
refactor first, to make adding functionality easier

start over after insights and refactor first

Long term refactoring
split into steps
use abstraction layer to support current and replacement implementation

other code

oldnew old

abstraction layer

new oldnew

planned refactoring
reserve time for refactoring

refactoring patterns

small refactorings

Only refactor in small steps with working code in-between so that you can keep all
loose ends in your head. Otherwise, defects sneak in.

reconcile differences – unify similar code
Change both pieces of code stepwise until they are identical. Then extract.

isolate change

1. isolate the code to be refactored from the rest
2. refactor
3. undo isolation.

temporary parallel implementation
1. introduce a new parallel implementation.
2. Switch one caller after the other.
3. Remove old solution when no longer needed.
This way you can refactor with only one red test at a time.

old

caller caller

new

migrate data
Move from one representation to another by temporary duplication of data structures.

foo(int i, string s)

foo(int i, string s, MyStruct m)

foo(MyStruct m)

MyStruct
contains i and s

demilitarized zone for components

Introduce an internal component boundary and push everything unwanted outside of
the internal boundary into the demilitarized zone between component interface and
internal boundary.
Then refactor the component interface to match the internal boundary and eliminate
the demilitarized zone.

Component

Adapter

Adapter

Ad
ap

ter

Demilitarized Zone

new component

restructure before refactoring

can there be too much refactoring?

sure

but unlikely

you can always refactor

but there had better be a test around it

Urs Enzler
urs.enzler@bbv.ch

twitter: @ursenzler
blog: www.planetgeek.ch

www.bbv.ch/blog
OSS lead: Appccelerate

user group: www.dotnet-zentral.ch

